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Abstract

Here we describe a set of tests comparing the MSD, CVE and ECVE diffusion estimators for short trajectories.

I. GENERAL COMMENTS

There are many comments and calculations added as lyx Notes in the lyx document, look at them for details on the
calculations, a copy of the Lyx file is in the Doc folder in the data folder.
• Data folder: 20220519_EXP-22-BL9418_(SimulationDiffusionTest)
• TriggerFacktor_Code: copy of the code, us it for generating data
• Folders: S_wXX_NXXnm (w= window size, N Gaussian noise )
• Folder: S_w16_N70nm_20periodes_2022_09_08 is used for the real-time tracking of Trigger Faktor manuscript.

For theory and results see below.

II. DETERMINING DIFFUSION COEFFICIENTS

Given position estimations for a particle trajectory, we like to find relevant parameters that characterize the underlying
dynamics related to it. For dynamical processes where the molecule in question is driven by a diffusion process and asso-
ciates/dissociates to a larger molecule, it is expected that the diffusion state-change can be observed. A more careful treatment
of MSD where contributions from motion blur and position estimation noise are incorporated reveals a richer theory with
alternative estimators. Building on the covariance point estimator (CVE) approach, that was derived by Berglund et al. and
related work [1–3], we expand their work further to incorporate an arbitrary time lag within the theory and derive alternative
point estimators.

Suppose that a particle is moving in one dimension by pure Brownian motion with a diffusion coefficient D and that the
particle position Xk for k = 1, ..., N is estimated with a time interval of ∆t, which will be referred to as the frame time, and
k is the frame index. For higher dimensions, 2D and 3D motion, we are assuming that each dimension is independent and
each can be treated separately. The observed position of the particle is then the average of its position weighted by a “shutter
function” s(t), a non-negative function whose integral over the frame time interval is unity. On top of this, we add a noise
factor representing the localization noise term which we assume is a zero mean gaussian with covariance 〈εiεj〉 = σ2δi,j .
Given that we have N frames, the kth frame ending at time t = k · ∆t where k = 1, ..., N , gives an observed position Xk

given by

Xk =

∫ k∆t

(k−1)∆t

s(t′ − (k − 1)∆t)Xtrue(t
′)dt′ + εk (1)

where Xtrue(t
′) is the true position of the particle at time t′ and εk is the value of the additive localization noise in frame k.

In the ideal case when εk = 0 and s(t) is a delta function then the observed position is the true position and the distribution
of position intervals ∆k,j = Xk+j −Xk for any fixed j > 0 are independent and are zero mean Gaussian distributed with a
variance

〈
∆2
k,j

〉
= 2 ·D ·∆t · j and the covariance matrix off-diagonal elements 〈∆k,j∆k′,j〉 = 0 for all k 6= k′. Introducing

localization noise and blur will induce correlations between ∆k,j which will give a covariance matrix with nonzero off-diagonal
elements.

a) Derivation of the zero mean: Using eq.(1) it is straightforward to show that 〈∆k,j〉 = 0 .
b) Derivation of covariance: For the covariance we like to evaluate 〈∆k,j∆k′,j〉, and after some algebra and using the

Brownian motion property 〈Xtrue(t
′′)Xtrue(t

′)〉 = Xtrue(0)2 + 2Dmin(t′, t′′) and that min(x, y) = (x + y)/2 − |x − y|/2
we get the covariance matrix

〈∆k,j∆k′,j〉 =


2D(j − 2R)∆t+ 2σ2, |k − k′| = 0
2D(j − |k′ − k|)∆t, |k − k′| < j

2DR∆t− σ2, |k − k′| = j
0, |k − k′| > j

(2)
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where j > 0 and
R = 1

∆t

(∫∆t

0
s(t′)t′ · dt′

−
∫∆t

0

∫∆t

0
s(t′)s(t′′) ·min(t′, t′′)dt′′dt′

)
= 1

∆t

∫∆t

0
S(t) (1− S(t)) dt

(3)

which is the blur factor with the cumulative shutter function

S(t) =

∫ t

0

s(t′)dt′

The covariance matrix diagonal elements are now the MSD curve as a function of time lag when viewed as a function of j.
The covariance matrix presented in Berglund et al. [1] is recovered when j = 1, and it can be seen from eq.(2) that it is a real
symmetric band matrix where the band width increases as j increases. Following the CVE method outlined in [4], we solve
for D and σ2. There are several possibilities for this and we look at three:

D̂ = 1
2j∆t∆

2
k,j + 1

j∆t∆k,j∆k+j,j

σ̂2 = R
j ∆2

k,j +
(

2R
j − 1

)
∆k,j∆k+j,j

(4)

D̂ = 1
2(j−n)∆t∆k,j∆k+n,j , for n = 1, ..j − 1

σ2 = 1
2∆2

k,j −
(j−2R)
2(j−n) ∆k,j∆k+n,j

(5)

D̂ = 1
2(j−n)∆t∆k,j∆k+n,j , for n = 1, ..j − 1

σ̂2 = R
(j−n)∆k,j∆k+n,j −∆k,j∆k+j,j , for n = 1, ..j − 1

(6)

here hat refers to estimations and the bar is the mean taken along the diagonal of the covariance matrix, thus ∆2
k,j =∑N−j

k=1 ∆2
k,j/(N − j − 1) =

〈
∆2
k,j

〉
k
, and ∆k,j∆k+j,j = 〈∆k,j∆k+j,j〉k where we use 〈〉k to indicate the mean over the

parameter k .The first pair is constructed by the diagonal matrix elements for |k − k′| = 0 and |k − k′| = j. This is a direct
extension of the CVE [4], and are the same when j = 1. For the second and third equations, we note that for 0 < |k − k′| < j
there is no σ2 or R dependence and thus D can be estimated directly. For σ2 there are two choices given this D estimator.
In the second pair we use the |k − k′| = 0 elements, and in the third pair we use |k − k′| = j elements. The estimator finally
used is the second pair with j = 8 and |k − k′| = 1. For our analysis, we note that for j > 1, the off-diagonals between
0 < |k − k′ | < j are all independent of σ, and a simple estimator for diffusion would be to solve for D and σ2 for a fixed
value of |k − k′ |. For the first off-diagonal, |k − k′ | = 1, and a time lag of j, the estimator is

D̃j =
〈∆k,j∆k′,j〉1
2∆t · (j − 1)

(7)

where 〈〉|k′−k|is the mean along the |k′ − k| = 1 off-diagonal of the covariance matrix. We will here refer to this estimator as
the extended covariance estimator (ECVE). The localization error, σ , can be estimated by inserting the diffusion estimation
D̃j into the main diagonal, |k′ − k| = 0, and solving for σ2. The ECVE estimator is compared to the CVE and the MSD in
sup.inf.(II-1); the conclusion is that the ECVE is more robust in presence of noise and has less bias compared to the MSD
when evaluated over short sections of a trajectory.

c) Likelihood function : It is possible to find an inverse to the covariance matrix, eq(2), [5], and by the spectral theorem
a real symmetric matrix is diagonalizable by orthogonal matrices. Thus we can argue, as in [3], that there is a orthogonal
matrix P such that PΣP−1 = Λ where Σj =

〈
∆j∆

T
j

〉
is the covariance matrix, eq(2) , where ∆j is the column vector

with displacement of distance j and Λ is a diagonal matrix with diagonal elements described by the vector λ. Note that this
also implies that there is a basis where the measurements ∆j are decoupled, since the diagonal matrix Λ = PΣjP

−1 =

P
〈
∆j∆

T
j

〉
P T =

〈
(P∆j)(P∆j)

T
〉
. In this basis the measurements P∆j are decoupled and constitute a Brownian motion

with step sizes λ. Thus, the probability for each step is given by a Gaussian, and the total log likelihood is the log of the
product of all of them. Skipping all constant terms, we get for a given offset j

l(∆j) = ln

(∏
i

1√
2πλi

e
−

(P∆j)
2
i

2λi

)
= − 1

2 ln (2π |Λ|)− 1
2 (P∆j)

T
Λ−1 (P∆j)

= − 1
2 ln (2π |Σj |)− 1

2∆
T
j Σ
−1
j ∆j

(8)

To include several j offsets in the likelihood, one can consider an interval of j values to use in the likelihood, 1 ≤ j ≤ J
wich gives
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Fig. 1. Trajectory coordinates for x (red), y (green) and z (blue). Each vertical section corresponds to 168ms and within each section a fixed diffusion rate
is maintained. The diffusion rates used are D0 = 0.1µm2/s (white), D1 = 1.4µm2/s (light gray) and D2 = 6µm2/s (dark gray)
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Fig. 2. Estimation of the diffusion over the trajectory in Fig.(1), red is the ground truth. Center plot are the histogram over the trajectory. The color code is
by true diffusion; D0 = 0.1µm2/s (blue), D1 = 1.4µm2/s (orange) and D2 = 6µm2/s (green). To the right are for each diffusion rate the mean Diwith
error as the distribution standard deviation, and bias Bibetween the true value and the mean.

L({∆j}Jj=1) =

J∏
j=1

1√
2π |Σj |

e−
1
2∆

T
j Σ
−1
j ∆j

Since Σj depends on D, a maximum likelihood estimator can be obtained by finding D that maximizes the likelihood above.
Since this is not a simple estimator, we will not pursue this and instead use the estimator in the main text.

1) Comparison between MSD, CVE and ECVE diffusion estimations: Above we discussed the ECVE method and its relation
to the mean square displacement (MSD) and the covariance estimator (CVE). To test their performance, we simulate simple
3D diffusion where the diffusion rate is increased in steps (D0 = 0.1µm2/s, D1 = 1.4µm2/s and D2 = 6µm2/s) where
each step is 168ms long. The time step used in the simulation is 0.84ms with a subsampling of 10 samples per time step.
On top of the 3D trajectory, we add Gaussian noise with a standard deviation of 70µm per axis. Each axis of the trajectory is
shown in Fig.(1) where the colored section corresponds to a diffusion rates. Three point estimators are tested, all are related
to the covariance matrix (eq.(2)) and are using a 16 point window for averaging. The first estimator is the MDS which is
given by the mean over the diagonal elements of eq.(2) when changing j and applying a linear regression to obtain D and σ2.
The second estimator is the CVE which have j = 1 and we solve for the D, σ2 and take the mean over the diagonal of the
covariance matrix. Lastly is the ECVE which is given by eq.(7) in the main text. In Fig.(2) and and Fig.(4) the three tests are
shown and compared. The CVE has a poor contrast/large std with the result that the two lower diffusion rates can hardly be
distinguished. This is the drawback of using a single step where not enough difference has accumulated. Looking at the MSD,
one can identify all three levels but there is a bias for slow diffusion. The ECVE shows better contrast/smaller std compared
to both the CVE and MSD and less bias. Estimating the positioning error σ2 for the three methods (see Fig.(3) and Fig.(4) )
shows that the MSD has a large bias that is often negatively valued. Both the CVE and ECVE have better performance and
have less bias.
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Fig. 3. Estimation of σ2 the trajectory in Fig.(1), red is the ground truth and corresponds to a standard deviation of 70µm. Center, the histogram color coded
by true diffusion; D0 = 0.1µm2/s (blue), D1 = 1.4µm2/s (orange) and D2 = 6µm2/s (green). To the right are for each diffusion rate the mean σ2

i with
error as the distribution standard deviation, and bias Bibetween the true value and the mean.
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Fig. 4. Comparason between the three diffusion estimators. Left, the difference between the true and estimated diffusion rates is shown for the three diffusion
rates tested, the error bars are the std. Right, same as left plot but for the estimatied noise σ2, here the first MSD point has a large bias and is outside of the
plot range.
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