
Sharing code

Introduction to Data Management Practices course
NBIS DM Team
data-management@scilifelab.se

https://doi.org/10.17044/scilifelab.c.6820587 

https://doi.org/10.17044/scilifelab.c.6820587


Some words before we start

Learning objectives
● Be able to describe some good code management 

practices, especially related to sharing code
● Be able to start implementing some of these good practices 

in your organisation (or in your own work)

You should be able to follow and learn from this talk even if you 
have never written a line of code!



Some definitions

software – set of computer programs and associated documentation and data. This is 
in contrast to hardware, from which the system is built and which actually performs the 
work (from Wikipedia).

computer program – sequence or set of instructions in a programming language for a 
computer to execute (from Wikipedia).

source code (or code) – set of instructions, or a system of rules, written in a 
particular programming language (from Wikipedia).

sharing code / publishing code – making code publicly available.

scientific computational workflow – a multi-step process to coordinate multiple tasks 
and their data dependencies (from Goble et al., Data Intelligence 2020; 2: 108–121)

https://doi.org/10.1162/dint_a_00033


Why sharing code?

• Transparency – “Look, this is what I did!”
• Reproducibility – “Try it yourself and see if youʼll get the same results!”
• Reusability – “Use it for your own needs!”
• For describing research methods in more detail – “See the softwareʼs manual for a 

more detailed explanation of …”
• To get more citations
• To get feedback
• Other?

Which reason is most important when it comes to code that is:
- used in science in general?
- produced within your organisation?
- produced by you?



Common excuses for not sharing 
code:

• “It is not common practice.”

• “People will pick holes and 
demand support and bug 
fixes.”

• “The code is valuable 
intellectual property that 
belongs to my institution.”

• “It is too much work to polish 
the code.”

Nature 467, 753 (2010) 
https://doi.org/10.1038/467753a

https://doi.org/10.1038/467753a


Good practices (1)

Five recommendations for FAIR software (https://fair-software.nl)

1. Use a public repository with version control (e.g. GitHub or BitBucket)
2. Add a license (see e.g. https://choosealicense.com/)
3. Register you code in a community registry
4. Enable citation of the software (e.g. via Zenodo or FigShare)
5. Use a software quality checklist

Read more about each recommendation: why it is important and where to 
get links to additional resources: https://fair-software.nl

https://fair-software.nl
https://choosealicense.com/licenses/
https://fair-software.nl


Good practices (2)

Four simple recommendations to encourage best practices in research 
software (https://doi.org/10.12688/f1000research.11407.1)

1. Make source code publicly accessible from day one
2. Make software easy to discover by providing software metadata via a 

popular community registry
3. Adopt a licence and comply with the licence of third-party 

dependencies
4. Define clear and transparent contribution, governance and 

communication processes

https://doi.org/10.12688/f1000research.11407.1


Some more good practices:

● Create a README file (see e.g. https://www.makeareadme.com) 

● Identify all contributors and acknowledge them (e.g. in README)

● Decide on a version naming scheme (see e.g. https://semver.org) 

● Create a release (using the chosen naming scheme)

● Create a changelog for describing changes (see e.g. 
https://keepachangelog.com)

● Create a software management plan

Good practices (3)

https://www.makeareadme.com
https://semver.org
https://keepachangelog.com
https://www.software.ac.uk/resources/guides/software-management-plans


Software management plans (1)

A software management plan should minimally include:

● What is expected to be produced (incl. documentation)?
● Who is responsible for releasing the software?
● What revision control process to be used?
● What license(s) will be used?

Adapted from https://www.software.ac.uk/resources/guides/software-management-plans

https://www.software.ac.uk/resources/guides/software-management-plans


Software management plans (2)

A software management plan could also:

• identify the software development model to be used
• identify the external software that will be brought into the project, and 

the associated licences
• what method will be used to accept each component being produced
• dependencies between developed components and with external 

dependencies
• major risks that might impact the delivery

Adapted from https://www.software.ac.uk/resources/guides/software-management-plans

https://www.software.ac.uk/resources/guides/software-management-plans


What about workflows?

● Scientific computational workflows (written in e.g. Snakemake or NextFlow) 
may be shared just like any kind of code. However, it is often better to follow 
guidelines that are specifically for sharing workflows. 

● The organisations’ behind the workflow management systems typically maintain 
their own documentation for how to share/publish workflows.

● You may publish your workflow in generic repositories like Zenodo or Figshare 
(e.g. SciLifeLab Data Repository) but WorkflowHub (https://workflowhub.eu) is 
probably a better place.

https://zenodo.org
https://figshare.scilifelab.se
https://workflowhub.eu


Peer reviewed citable reference

You can also write a software article to make your software more visible.
Software publications are 
becoming more and more 
common across disciplines.
The diagram compares the 
number of published software 
articles with number of published 
articles in three scientific fields
(source Elsevier/Scopus).
From: 
https://www.elsevier.com/connect/4-reasons-to-publish-software-articles-even-if-youre-not-a-computer-scient
ist 

https://www.elsevier.com/connect/4-reasons-to-publish-software-articles-even-if-youre-not-a-computer-scientist
https://www.elsevier.com/connect/4-reasons-to-publish-software-articles-even-if-youre-not-a-computer-scientist


What can we do as an organization?

• Identify code and software within the organization
• Evaluate the sustainability of the organisation’s software (e.g. using Software 

Sustainability Institute’s online evaluation tool)
• Create software management plans where needed
• Create a software and code sustainability plan for the organization
• Create organizational policies and best practices

– Where to store and maintain code
– How is code documented?
– How should releases be named?
– What code should be published?
– Where should code be published?

https://www.software.ac.uk/resources/online-sustainability-evaluation

