SciLifeLab

Sharing code

Introduction to Data Management Practices course
NBIS DM Team
data-management@scilifelab.se

https://doi.org/10.17044/scilifelab.c.6820587

(@ol

https://doi.org/10.17044/scilifelab.c.6820587

Some words before we start ScilLifeLab

Learning objectives

e Be able to describe some good code management
practices, especially related to sharing code

e Be able to start implementing some of these good practices
in your organisation (or in your own work)

You should be able to follow and learn from this talk even if you
have never written a line of code!

-

< Some definitions ScilLifeLab

software — and associated documentation and data. This is
in contrast to hardware, from which the system is built and which actually performs the
work (from Wikipedia).

computer program — sequence or in a programming language for a
(from Wikipedia).

source code (or code) —
(from Wikipedia).

sharing code / publishing code — making code publicly available.

scientific computational workflow — a multi-step process to coordinate multiple tasks
and their data dependencies (from Goble et al., Data Intelligence 2020; 2: 108—121)

https://doi.org/10.1162/dint_a_00033

: Why sharing code? ScilLifeLab

/

. — “Look, this is what | did!”

. - “Try it yourself and see if you’ll get the same results!”

. - “Use it for your own needs!”

« For in more detail - “See the software’s manual for a

more detailed explanation of ...”
« Togetmore
« Toget
« Other?

Which reason is most important when it comes to code that is:

- used in science in general?
- produced within your organisation?
- produced by you?

NBZS ScilifeLab

Common excuses for not sharing
code:

« ‘It is not common practice.” WORLD VIEW..........

Publish your computer
"®8 code: it is good enough

: E Y Freely provided working code — whatever its quality — improves programming
and enables others to engage with your research, says Nick Barnes.

» “People will pick holes and
demand support and bug
fixes.”

WWW.SERENAATKINS.COM

them and now intends to replace its original software with ours.

So, openness improved both the code used by the scientists and the
ability of the public to engage with their work. This is to be expected.
Other scientific methods improve through peer review. The open-

am a professional software engineer and I want to share a trade
Isecret with scientists: most professional computer software isn't

very good. The code inside your laptop, television, phone or car is
often badly documented, inconsistent and poo rly tested.

 “The code is valuable
i n te I le Ctu a I p ro pe rty th at B it e

belongs to my institution.”
Nature 467, 753 (2010)

‘It is too much work to polish https://doi.org/10.1038/467753a
the code.”

source movement has led to rapid improvements within the software
industrv Rut science sonrce cade not exnosed ta serutinv cannat

https://doi.org/10.1038/467753a

/

Good practices (1) SciLifelLab

Five recommendations for FAIR software (https://fair-software.nl)

Use a public with version control (e.g. GitHub or BitBucket)
Add a (see e.g. https://choosealicense.com/)

Register you code in a community

Enable of the software (e.g. via Zenodo or FigShare)

Use a software quality

o bk w0~

Read more about each recommendation: why it is important and where to
get links to additional resources: https://fair-software.nl

https://fair-software.nl
https://choosealicense.com/licenses/
https://fair-software.nl

Good practices (2) SciLifelLab

/

Four simple recommendations to encourage best practices in research
software (https://doi.org/10.12688/f1000research.11407.1)

1. Make source code from day one

2. Make software easy to discover by providing software metadata via a
popular

3. Adopta and comply with the licence of third-party

dependencies
4. Define clear and

elixir

https://doi.org/10.12688/f1000research.11407.1

/

Good practices (3) SciLifelLab

Some more good practices:

e Create a README file (see e.g. https://www.makeareadme.com)

e Identify all contributors and acknowledge them (e.g. in README)

e Decide on a version naming scheme (see e.g. https://semver.org)

e Create a release (using the chosen naming scheme)

e Create a changelog for describing changes (see e.qg.
https://keepachangelog.com)

e Create a software management plan

https://www.makeareadme.com
https://semver.org
https://keepachangelog.com
https://www.software.ac.uk/resources/guides/software-management-plans

/

Software management plans (1) */ SciLifeLab

A software management plan should include:
e \What is expected to be produced (incl. documentation)?
e \Who is responsible for releasing the software?
e \What revision control process to be used?
e \What license(s) will be used?

47 +\ SOFTWARE

Q SUSTAINABILITY
INSTITUTE

Adapted from https://www.software.ac.uk/resources/quides/software-management-plans

https://www.software.ac.uk/resources/guides/software-management-plans

Software management plans (2) */ SciLifeLab

/

A software management plan

 identify the software development model to be used

 identify the external software that will be brought into the project, and
the associated licences

« what method will be used to accept each component being produced

» dependencies between developed components and with external
dependencies

* maijor risks that might impact the delivery

Adapted from https://www.software.ac.uk/resources/quides/software-management-plans

https://www.software.ac.uk/resources/guides/software-management-plans

< What about workflows? ScilLifeLab

e Scientific computational workflows (written in e.g. Snakemake or NextFlow)
may be shared just like any kind of code. However, it is often better to follow
guidelines that are specifically for sharing workflows.

e The organisations’ behind the workflow management systems typically maintain
their own documentation for how to share/publish workflows.

e You may publish your workflow in generic repositories like Zenodo or Figshare
(e.g. SciLifeLab Data Repository) but WorkflowHub (https://workflowhub.eu) is
probably a better place.

dyWorkflowHub

https://zenodo.org
https://figshare.scilifelab.se
https://workflowhub.eu

/

Peer reviewed citable reference* " SciLifeLab

You can also write a software article to make your software more visible.

Software publications are
becoming more and more

common across disciplines.

The diagram compares the
number of published software
articles with number of published “*
articles in three scientific fields

(source Elsevier/Scopus).

......

From:
https://www.elsevier.com/connect/4-reasons-to-puuiisi I=suiwdi e=-di ULIES=E VET I=11-YUUI E=1 ITUL=d=LUI 1 TDULET =SUIET IL
ist

https://www.elsevier.com/connect/4-reasons-to-publish-software-articles-even-if-youre-not-a-computer-scientist
https://www.elsevier.com/connect/4-reasons-to-publish-software-articles-even-if-youre-not-a-computer-scientist

/

What can we do as an organization?ScilLifeLab

|ldentify code and software within the organization

Evaluate the sustainability of the organisation’s software (e.g. using Software
Sustainability Institute’s online evaluation tool)

Create software management plans where needed
Create a software and code sustainability plan for the organization

Create organizational policies and best practices
— Where to store and maintain code
— How is code documented?
— How should releases be named?
— What code should be published?
— Where should code be published?

https://www.software.ac.uk/resources/online-sustainability-evaluation

